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It may be that since one is customarily 
concerned with existence, […] finiteness, 
and so forth, one is not inclined to take 
seriously the question of the existence of a 
better-than-finite algorithm.

- Jack Edmonds, “Paths, Trees, and Flowers”



  

A Decidable Problem
● Consider the following problem:

Given two regular expressions R₁ and R₂, 
determine whether R₁ and R₂ have the same 

language.
● This problem is indeed decidable.

● We autograded your regular expressions in Problem 
Set Seven. The algorithm we used is 100% accurate.

● Theorem: There is no algorithm for solving this 
problem whose runtime is O(2m+n), where m and 
n are the lengths of the input regular 
expressions.



  

The Limits of Decidability
● The fact that a problem is decidable does not 

mean that it is feasibly decidable.
● In computability theory, we ask the question

What problems can be solved by a computer?
● In complexity theory, we ask the question

What problems can be solved
efficiently by a computer?

● In the remainder of this course, we will 
explore this question in more detail.



  

Where We've Been
● The class R represents problems that can be 

solved by a computer.
● The class RE represents problems where “yes” 

answers can be verified by a computer. 
The mapping reduction can be used to find 
connections between problems.



  

Where We're Going
● The class P represents problems that can be 

solved efficiently by a computer.
● The class NP represents problems where “yes” 

answers can be verified efficiently by a 
computer.
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The Setup
● In order to study computability, we needed to 

answer these questions:
● What is “computation?”
● What is a “problem?”
● What does it mean to “solve” a problem?

● To study complexity, we need to answer these 
questions:
● What resources do we want our programs to make 

“efficient” use of?
● How do we draw the line between “efficient” and 

“inefficient?”



  

Measuring Efficiency
● We have a program written in your Favorite Programming 

Language that’s a decider for some problem.
● The program is correct in the sense that it always produces the 

right output for any given input.
● What aspect of that program might we measure to quantify 

“efficiency?”
● The number of lines of code in the program.
● How deeply-nested the loops or recursion in the program are.
● How much time it takes for the program to solve the problem.
● How much memory it takes for the program to solve the problem.
● How much power it takes for the program to solve the problem.
● How much network communication it takes for the program to solve 

the problem.
● …



  

Measuring Efficiency
We have a program written in your Favorite Programming 
Language that’s a decider for some problem.
The program is correct in the sense that it always produces the 
right output for any given input.
What aspect of that program might we measure to quantify 
“efficiency?”

The number of lines of code in the program.
How deeply-nested the loops or recursion in the program are.

● How much time it takes for the program to solve the problem.
How much memory it takes for the program to solve the problem.
How much power it takes for the program to solve the problem.
How much network communication it takes for the program to solve 
the problem.
…

We’re going to focus on this 
measure of “efficiency,” but that 
doesn’t mean these other ones 

aren’t interesting! There’s tons of 
research on them.



  

What is an efficient algorithm?

Let’s explore some problems and 
solutions and see what we notice!



  

A Common Pattern:
Searching Finite Spaces

● Many decidable problems can be solved by 
searching over a large but finite space of 
possible options.

● Searching this space might take a 
staggeringly long time, but only finite time.

● From a decidability perspective, this is totally 
fine.

● From a complexity perspective, this may be 
totally unacceptable.



  

Longest Increasing Subsequences
● One possible algorithm: try all subsequences, 

find the longest one that's increasing, and return 
that.

● There are 2n subsequences of an array of length n.
● (Each subset of the elements gives back a subsequence.)

● Checking all of them to find the longest increasing 
subsequence will take time O(n · 2n).

● Fact: the age of the universe is about 4.3 × 1026 
nanoseconds. That's about 285 nanoseconds.

● Practically speaking, this algorithm doesn't 
terminate if you give it an input of size 100 or 
more.



  

A Different Approach



  

Patience Sorting
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Place each number on top of a pile.
 

Put each number on top of the first pile 
whose top value is larger than it. (If you 

can’t, make a new pile.)
 

Then, add a link to the top number in the 
previous pile.



  

Patience Sorting
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Trace backwards from the top of the last 
pile. The numbers you visit form one of the 
longest increasing subsequences of your 

original sequence.



  

Longest Increasing Subsequences
● Theorem: There is an algorithm that can find the 

longest increasing subsequence of an array in time 
O(n²).
● It’s the previous patience sorting algorithm, with some 

clever implementation tricks.
● This algorithm works by exploiting particular aspects 

of how longest increasing subsequences are 
constructed. It's not immediately obvious that it 
works correctly.

● CS161-Style Exercise 1: Prove that this procedure 
always works!

● CS161-Style Exercise 2: Show that you can 
implement this algorithm in time O(n log n).



  

Another Problem
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Goal: Determine the 
length of the shortest 
path from F to A in 

this graph.



  

Shortest Paths
● It is possible to find the shortest path in a 

graph by listing off all sequences of 
nodes in the graph in ascending order of 
length and finding the first that's a path.

● This takes time O(n · n!) in an n-node 
graph.

● For reference: 29! nanoseconds is longer 
than the lifetime of the universe.



  

Shortest Paths
● Theorem: It's possible to find the 

shortest path between two nodes in an n-
node, m-edge graph in time O(m + n).

● Proof idea: Use breadth-first search!
● This scales nicely!
● The algorithm is a bit nuanced. It uses 

some specific properties of shortest paths 
and the proof of correctness is nontrivial.



  

For Comparison
● Longest increasing 

subsequence:
● Naive: O(n · 2n)
● Fast: O(n²)

● Shortest path 
problem:
● Naive: O(n · n!)
● Fast: O(n + m).



  

Defining Efficiency
● When dealing with problems that search 

for the “best” object of some sort, there 
are often at least exponentially many 
possible options.

● Brute-force solutions tend to take at least 
exponential time to complete.

● Clever algorithms often run in time O(n), 
or O(n2), or O(n3), etc.



  

Polynomials and Exponentials
● An algorithm runs in polynomial time if 

its runtime is some polynomial in n.
● That is, time O(nk) for some constant k.

● Polynomial functions “scale well.”
● Small changes to the size of the input do not 

typically induce enormous changes to the 
overall runtime.

● Exponential functions scale terribly.
● Small changes to the size of the input induce 

huge changes in the overall runtime.



  

The Cobham-Edmonds Thesis

A language L can be decided efficiently if
there is a TM that decides it in polynomial time.

 

Equivalently, L can be decided efficiently if
it can be decided in time O(nk) for some k ∈ ℕ.

Like the Church-Turing thesis, this is 
not a theorem!

 

It's an assumption about the nature of 
efficient computation, and it is 

somewhat controversial.
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The Cobham-Edmonds Thesis
Which of the following are considered efficient runtimes?

n2 – 3n + 17 ✓ This is a polynomial in n.

✓ Bounded by n2.

✓ This is a polynomial in n.

× Eventually bigger than nk for all k.

× Eventually bigger than nk for all k.

× Eventually bigger than nk for all k.
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✓ 10500 = 10500 n0 is a polynomial in n.

✓



  

Why Polynomials?
● Polynomial time somewhat captures efficient 

computation, but has a few edge cases.
● However, polynomials have very nice mathematical 

properties:
● The sum of two polynomials is a polynomial. (Running one 

efficient algorithm, then another, gives an efficient 
algorithm.)

● The product of two polynomials is a polynomial. (Running 
one efficient algorithm a “reasonable” number of times 
gives an efficient algorithm.)

● The composition of two polynomials is a polynomial. 
(Using the output of one efficient algorithm as the input to 
another efficient algorithm gives an efficient algorithm.)



  

The Complexity Class P
● The complexity class P (for polynomial 

time) contains all problems that can be 
solved in polynomial time.

● Formally:
P = { L | There is a polynomial-time   

decider for L }      
● Assuming the Cobham-Edmonds thesis, a 

language is in P if it can be decided 
efficiently.



  

Examples of Problems in P
● All regular languages are in P.

● All have linear-time TMs.
● All CFLs are in P.

● Requires a more nuanced argument (the 
CYK algorithm or Earley's algorithm).

● And a ton of other problems are in P as 
well.
● Curious? Take CS161!



  Undecidable Languages

Regular
Languages CFLs RP



  

What can't you do in polynomial time?



  

start

end

How many paths 
are there from 
the start node 
to the end 

node?



  

, ,
How many 

subsets of this 
set are there?

,



  

An Interesting Observation
● There are (at least) exponentially many 

objects of each of the preceding types.
● However, each of those objects is not very 

large.
● Each simple path has length no longer than the 

number of nodes in the graph.
● Each subset of a set has no more elements than 

the original set.
● This brings us to our next topic...



  

What if you need to search a large 
space for a single object?



  

Verifiers – Again
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Does this Sudoku problem 
have a solution?



  

Verifiers – Again

Is there an ascending subsequence of 
length at least 5?

34 11 9 7 13 5 6 1 12 2 8 0 10



  

Verifiers – Again

Is there a path that goes through 
every node exactly once?
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Polynomial-Time Verifiers
● A polynomial-time verifier for L is a 

TM V such that
● V halts on all inputs.
● w ∈ L    ↔    ∃c ∈ Σ*. V accepts ⟨w, c⟩.
● V runs “efficiently” (its runtime is O(|w|k) for 

some k ∈ ℕ).
● All strings in L have “short” certificates 

(their lengths are O(|w|r) for some r ∈ ℕ).



  

The Complexity Class NP
● The complexity class NP (nondeterministic polynomial 

time) contains all problems that can be verified in 
polynomial time.

● Formally:
             NP = { L | There is a polynomial-time 
                                 verifier for L }

● The name NP comes from another way of characterizing NP. 
If you introduce nondeterministic Turing machines and 
appropriately define “polynomial time,” then NP is the set of 
problems that an NTM can solve in polynomial time.

● Useful fact: NP  ⊊ R.
● Proof idea: If L ∈ NP, all strings in L have “short” certificates. 

Therefore, we can just try all possible “short” certificates and see if 
any of them work. (Showing NP is a strict subset of R requires 
some more advanced techniques.)



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifier for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifier for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

Time-Out for Announcements!



  

Please evaluate this course in Axess.
Your comments really make a difference.



  

Problem Sets
● Problem Set 8 solutions are now up on 

the course website.
● Your TAs are working on grading them, and 

we’ll have them ready by Wednesday.
● Problem Set 9 is due this Friday at 

1:00PM.
● As always, come talk to us if you have any 

questions!
● Feel free to use a late day if you have one 

left over.



  

Final Exam Logistics
● Our final exam is on Wednesday, March 19th 

from 3:30PM – 6:30PM. 
● Locations to be announced later this week.
● The final exam is covers topics from PS0 – 

PS9 and L00 – L26. The format is similar to 
that of the midterm, with a mix of short-
answer questions and formal written proofs.

● Like the midterms, it’s closed-book, closed-
computer, and limited-note. You can bring one 
double-sided 8.5” × 11” notes sheet with you.



  

Preparing for the Exam
● We’ll release details of final exam review once 

everything is finalized.
● We’ll also release EPP3, a collection of four 

practice final exams you can use to prepare.
● We’ll also release a Cumulative Practice 

Problems list, a gigantic searchable database 
of problems you can use to brush up on 
whatever topics you need the most practice 
with.

● As always, keep the TAs in the loop when 
studying! That’s what we’re here for.



  

Back to CS103!



  

And now...



  

The
 

Biggest Question
 

in
 

Theoretical Computer Science



  

P  ≟ NP



  

     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifier for L }

P ⊆ NP

Polynomial-Time
Decider for L

yes!

no!

input string (w)     

bool solveProblemL(string w) {

    do some work;
    return the answer;
}



  

     P = { L | There is a polynomial-time
                     decider for L }

     NP = { L | There is a polynomial-time
                        verifier for L }

Polynomial-Time
Verifier for L

yes!

no!

input string (w)     

certificate (c)  
(ignored)

bool solveProblemL(string w, string c) {
    /* don't even look at c */
    do some work;
    return the answer;
}

P ⊆ NP



  

P NP

Which Picture is Correct?



  

P NP

Which Picture is Correct?



  

P  ≟ NP
● The P ≟ NP question is the most important question in 

theoretical computer science.
● With the verifier definition of NP, one way of phrasing 

this question is
If a solution to a problem can be checked efficiently,

can that problem be solved efficiently?
● An answer either way will give fundamental insights 

into the nature of computation.



  

Why This Matters
● The following problems are known to be efficiently 

verifiable, but have no known efficient solutions:
● Determining whether an electrical grid can be built to link up 

some number of houses for some price (Steiner tree problem).
● Determining whether a simple DNA strand exists that multiple 

gene sequences could be a part of (shortest common 
supersequence).

● Determining the best way to assign hardware resources in a 
compiler (optimal register allocation).

● Determining the best way to distribute tasks to multiple 
workers to minimize completion time (job scheduling).

● And many more.
● If P = NP, all of these problems have efficient solutions.
● If P ≠ NP, none of these problems have efficient solutions.



  

Why This Matters
● If P = NP:

● A huge number of seemingly difficult problems 
could be solved efficiently.

● Our capacity to solve many problems will scale 
well with the size of the problems we want to 
solve.

● If P ≠ NP:
● Enormous computational power would be 

required to solve many seemingly easy tasks.
● Our capacity to solve problems will fail to keep up 

with our curiosity.



  

What We Know
● Resolving P  ≟ NP has proven extremely difficult.
● In the past 50 years:

● Not a single correct proof either way has been 
found.

● Many types of proofs have been shown to be 
insufficiently powerful to determine whether 
P   ≟ NP.

● A majority of computer scientists believe P ≠ NP, 
but this isn't a large majority.

● Interesting read: Interviews with leading thinkers 
about P  ≟ NP:

● https://www.cs.umd.edu/~gasarch/papers/poll.pdf

https://www.cs.umd.edu/~gasarch/papers/poll.pdf


  

The Million-Dollar Question

The Clay Mathematics Institute has offered 
a $1,000,000 prize to anyone who proves 

or disproves P = NP.



  

“My hunch is that [P ≟ NP] will be solved 
by a young researcher who is not 

encumbered by too much conventional 
wisdom about how to attack the problem.”

– Prof. Richard Karp
(The guy who first popularized the P  NP≟  problem.)



  

What do we know about P  ≟ NP?



  

Adapting our Techniques



  

  P =   { L | there is a polynomial-time
 decider for L }

   NP =   { L | there is a polynomial-time
verifier for L }



  

  R =   { L | there is a polynomial-time
 decider for L }

   RE =   { L | there is a polynomial-time
verifier for L }



  

We know that R ≠ RE.

So does that mean P ≠ NP?



  

A Problem
● The R and RE languages correspond to 

problems that can be decided and verified, 
period, without any time bounds.

● To reason about what's in R and what's in 
RE, we used two key techniques:
● Universality: TMs can simulate other TMs.
● Self-Reference: TMs can get their own source 

code.
● Why can't we just do that for P and NP?



  

Theorem (Baker-Gill-Solovay): Any 
proof that purely relies on universality and 
self-reference cannot resolve P  ≟ NP.

Proof: Take CS154!



  

So how are we going to
reason about P and NP?



  

Next Time
● Reducibility

● A technique for connecting problems to one 
another.

● NP-Completeness
● What are the hardest problems in NP?
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